477 research outputs found

    A setup for soft proton irradiation of X-ray detectors for future astronomical space missions

    Full text link
    Protons that are trapped in the Earth's magnetic field are one of the main threats to astronomical X-ray observatories. Soft protons, in the range from tens of keV up to a few MeV, impinging on silicon X-ray detectors can lead to a significant degradation of the detector performance. Especially in low earth orbits an enhancement of the soft proton flux has been found. A setup to irradiate detectors with soft protons has been constructed at the Van-de-Graaff accelerator of the Physikalisches Institut of the University of T\"ubingen. Key advantages are a high flux uniformity over a large area, to enable irradiations of large detectors, and a monitoring system for the applied fluence, the beam uniformity, and the spectrum, that allows testing of detector prototypes in early development phases, when readout electronics are not yet available. Two irradiation campaigns have been performed so far with this setup. The irradiated detectors are silicon drift detectors, designated for the use on-board the LOFT space mission. This paper gives a description of the experimental setup and the associated monitoring system.Comment: 20 pages, 10 figures, 4 table

    PixDD: a multi-pixel silicon drift detector for high-throughput spectral-timing studies

    Get PDF
    The Pixelated silicon Drift Detector (PixDD) is a two-dimensional multi-pixel X-ray sensor based on the technology of Silicon Drift Detectors, designed to solve the dead time and pile-up issues of photon-integrating imaging detectors. Read out by a two-dimensional self-triggering Application-Specific Integrated Circuit named RIGEL, to which the sensor is bump-bonded, it operates in the 0:5 — 15 keV energy range and is designed to achieve single-photon sensitivity and good spectroscopic capabilities even at room temperature or with mild cooling (< 150 eV resolution at 6 keV at 0 °C). The paper reports on the design and performance tests of the 128-pixel prototype of the fully integrated system

    Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at sNN\sqrt{s_{NN}} = 5.02 TeV

    Full text link
    Two-particle angular correlations between unidentified charged trigger and associated particles are measured by the ALICE detector in p-Pb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. The transverse-momentum range 0.7 <pT,assoc<pT,trig< < p_{\rm{T}, assoc} < p_{\rm{T}, trig} < 5.0 GeV/cc is examined, to include correlations induced by jets originating from low momen\-tum-transfer scatterings (minijets). The correlations expressed as associated yield per trigger particle are obtained in the pseudorapidity range η<0.9|\eta|<0.9. The near-side long-range pseudorapidity correlations observed in high-multiplicity p-Pb collisions are subtracted from both near-side short-range and away-side correlations in order to remove the non-jet-like components. The yields in the jet-like peaks are found to be invariant with event multiplicity with the exception of events with low multiplicity. This invariance is consistent with the particles being produced via the incoherent fragmentation of multiple parton--parton scatterings, while the yield related to the previously observed ridge structures is not jet-related. The number of uncorrelated sources of particle production is found to increase linearly with multiplicity, suggesting no saturation of the number of multi-parton interactions even in the highest multiplicity p-Pb collisions. Further, the number scales in the intermediate multiplicity region with the number of binary nucleon-nucleon collisions estimated with a Glauber Monte-Carlo simulation.Comment: 23 pages, 6 captioned figures, 1 table, authors from page 17, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/161

    Multi-particle azimuthal correlations in p-Pb and Pb-Pb collisions at the CERN Large Hadron Collider

    Full text link
    Measurements of multi-particle azimuthal correlations (cumulants) for charged particles in p-Pb and Pb-Pb collisions are presented. They help address the question of whether there is evidence for global, flow-like, azimuthal correlations in the p-Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p-Pb collisions. However, when a Δη|\Delta \eta| gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high-multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4}v_{2}\{4\} to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4}v2{6}0v_{2}\{4\} \simeq v_{2}\{6\}\neq 0 which is indicative of a Bessel-Gaussian function for the v2v_{2} distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a Δη>1.4|\Delta\eta| > 1.4 gap is placed.Comment: 25 pages, 11 captioned figures, 3 tables, authors from page 20, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/87

    Digital Pixel Test Structures implemented in a 65 nm CMOS process

    Full text link
    The ALICE ITS3 (Inner Tracking System 3) upgrade project and the CERN EP R&D on monolithic pixel sensors are investigating the feasibility of the Tower Partners Semiconductor Co. 65 nm process for use in the next generation of vertex detectors. The ITS3 aims to employ wafer-scale Monolithic Active Pixel Sensors thinned down to 20 to 40 um and bent to form truly cylindrical half barrels. Among the first critical steps towards the realisation of this detector is to validate the sensor technology through extensive characterisation both in the laboratory and with in-beam measurements. The Digital Pixel Test Structure (DPTS) is one of the prototypes produced in the first sensor submission in this technology and has undergone a systematic measurement campaign whose details are presented in this article. The results confirm the goals of detection efficiency and non-ionising and ionising radiation hardness up to the expected levels for ALICE ITS3 and also demonstrate operation at +20 C and a detection efficiency of 99% for a DPTS irradiated with a dose of 101510^{15} 1 MeV neq/_{\mathrm{eq}}/cm2^2. Furthermore, spatial, timing and energy resolutions were measured at various settings and irradiation levels.Comment: Updated threshold calibration method. Implemented colorblind friendly color palette in all figures. Updated reference

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    K0S and Λ production in Pb-Pb collisions at sNN−−−−√=2.76  TeV

    Get PDF
    The ALICE measurement of K0S and Λ production at midrapidity in Pb-Pb collisions at sNN−−−√=2.76  TeV is presented. The transverse momentum (pT) spectra are shown for several collision centrality intervals and in the pT range from 0.4  GeV/c (0.6  GeV/c for Λ) to 12  GeV/c. The pT dependence of the Λ/K0S ratios exhibits maxima in the vicinity of 3  GeV/c, and the positions of the maxima shift towards higher pT with increasing collision centrality. The magnitude of these maxima increases by almost a factor of three between most peripheral and most central Pb-Pb collisions. This baryon excess at intermediate pT is not observed in pp interactions at s√=0.9  TeV and at s√=7  TeV. Qualitatively, the baryon enhancement in heavy-ion collisions is expected from radial flow. However, the measured pT spectra above 2  GeV/c progressively decouple from hydrodynamical-model calculations. For higher values of pT, models that incorporate the influence of the medium on the fragmentation and hadronization processes describe qualitatively the pT dependence of the Λ/K0S ratio
    corecore